PUBLICATIONS

PEER-REVIEWED PAPERS

  1. Kawano T, Zhou J, Anwar S, Salah H, Dayal AH, Ishikawa Y, Boetel K, Takahashi T, Sharma K, Inoue M: T cell infiltration into the brain triggers pulmonary dysfunction in murine Cryptococcus-associated IRIS. Nature Communications 2023, 14(1):3831.
  2. Khaw YM, Anwar S, Zhou J, Kawano T, Lin PC, Otero A, Barakat R, Drnevich J, Takahashi T, KO C*, Inoue M*. Estrogen receptor alpha signaling in dendritic cells modulates autoimmune disease phenotype in mice. EMBO reports, e54228
  3. Khaw YM, Tierney A, Cunningham C, Soto-Díaz K, Kang E, Steelman AJ, Inoue M*. Astrocytes lure CXCR2-expressing CD4+T cells to grey matter via TAK1-mediated chemokine production in a mouse model of multiple sclerosis. Proc Natl Acad Sci USA. 118 (8), 2021
  4. Deerhake E, Danzaki K, Inoue M, Cardakli E, Nonaka1T, Aggarwal N, Barclay W, Ji R Shinohara M. Dectin-1 limits CNS autoimmunity through a non-canonical pathway. Immunity 54, 1-15, 2021.
  5. Khaw YM, Majid D, Oh S, Kang E, Inoue M*. Early-life-trauma triggers interferon-β resistance and neurodegeneration in a multiple sclerosis model via downregulated β1-adrenergic signaling. Nature communications. 12, no. 1: 1-16, 2021.
  6. Khaw YM, Aggarwal N, Barclay WE, Kang E, Inoue M*, Shinohara ML*. Th1-dependent Cryptococcus-associated immune reconstitution inflammatory syndrome (C-IRIS) model with brain damage. Frontiers in Immunology. 11:2466, 2020.
  7. Song Z, Khaw YM, Pacheco LA, Tseng KY, Tan Z, Cai K, Ponnusamy E, Cheng J*, Inoue M*. Induction of a higher-ordered architecture in glatiramer acetate improves its biological efficiency in an animal model of multiple sclerosis. Biomaterials Science. 8(19):5271-81, 2020.
  8. Khaw YM, Cunningham C, Tierney A, Sivaguru M, Inoue M*. Neutrophil-selective deletion of Cxcr2 protects against CNS neurodegeneration in a mouse model of multiple sclerosis. Journal of neuroinflammation. 17(1), pp.1-12, 2020.
  9. Sivaguru M*, Khaw YM, Inoue M*. A Confocal Reflection Super‐Resolution Technique to Image Golgi‐Cox Stained Neurons. Journal of microscopy. Aug;275(2):115-30, 2019.
  10. Kanayama M, Xu S, Danzaki K, Gboson JR, Inoue M, Gregory S, Shinohara M. Skewing the population balance between lymphoid and myeloid cells by osteopontin isoforms. Nat Immunol. 18: 973-984, 2017
  11. Singh N, Inoue M, Osawa R, Wagener MM, Shinohara ML. Inflammasome expression and cytomegalovirus viremia in critically ill patients with sepsis. J Clin Virol. 93:8-14, 2017
  12. Inoue M, Chen PH, Siecinski S, Li QJ, Liu C, Steinman L, Gregory SG, Benner E, Shinohara ML. An interferon-β- resistant and inflammasome-independent subtype of EAE with neuronal damage. Nat Neurosci. 19:1599-1609, 2016.
  13. Inoue M and Shinohara M.L. Hyperinflammation, T cells, and endotoxemia. Oncotarget. 6:23040-1, 2015.
  14. Inoue M and Shinohara M.L. Cutting Edge: Role of Osteopontin and Integrin αv in T Cell-Mediated Anti-Inflammatory Responses in Endotoxemia. J Immunol. 94:5595-8, 2015
  15. Lee SC, Li A, Calo S, Inoue M, Tonthat NK, Bain JM, Louw J, Shinohara ML, Erwig LP, Schumacher MA, Ko DC, Heitman J. Calcineurin orchestrates dimorphic transitions, antifungal drug responses, and host-pathogen interactions of the pathogenic mucoralean fungus Mucor circinelloides. Mol Microbiol. 97:844-65, 2015.
  16. Kanayama M. Inoue M, Danzaki K., Hammer G., He Y.W. and Shinohara M.L. Autophagy enhances NFκB activity in specific tissue macrophages by sequestering A20 to boost anti-fungal immunity. Nat Commun. 22;6:5779, 2015
  17. Gerriets VA KR, Nichols AG, Macintyre AN, Inoue M, Ilkayeva O, Winter PS, Liu X, Priyadharshini B, Slawinska ME, Haeberli L, Huck C, Turka LA, Wood KC, Hale LP, Smith PA, Schneider MA, MacIver NJ, Locasale4 JW,Newgard CB, Shinohara ML, Rathmell JC. Metabolic Programming and PDHK1 Control CD4 T-Cell Subsets and Inflammation. Clinic. Invest. 125:194-207, 2015.
  18. Inoue M, Arikawa T, Chen YH, Moriwaki Y, Price M, Brown M, Perfect JM, Shinohara M. T cells downregulate macrophage TNF production by IRAK1-mediated IL-10 expression and control innate hyperinflammation. Proc Natl Acad Sci U S A. 11:5295-300, 2014
  19. Wang B, Rao Y-H, Inoue M, Hao R, Lai C-H, McDonald SL, Choi M-C, Wang Q, Shinohara ML, Yao T-P. Microtubule acetylation amplifies p38 kinase signaling and anti-inflammatory IL-10 production. Nat Commun. 5:3479, 2014.
  20. Inoue M, Shinohara Clustering of pattern recognition receptors for fungal detection. PLoS Pathog. 10: e1003873, 2014
  21. Inoue M, Kanayama M., Shinohara Inflammasomes. Encyclopedia of Inflammatory Diseases. in press
  22. Inoue M, Shinohara NLRP3 Inflammasome and MS/EAE. Autoimmune Dis.859145, 2013
  23. Inoue M, Shinohara The role of IFNβ in the treatment of MS and EAE – In the perspective of inflammasomes. Immunology. 139:11-8, 2013.
  24. Gorentla BK, Krishna S, Shin J, Inoue M, Shinohara ML, Grayson JM, Fukunaga R, Zhong XP. Mnk1 and 2 Are Dispensable for T Cell Development and Activation but Important for the Pathogenesis of Experimental Autoimmune Encephalomyelitis. J Immunol. 190:1026-37, 2012.
  25. Inoue M, Williams KL, Oliver T, Vandenabeele P, Rajan JV, Miao EA, Shinohara ML. Interferon-β therapy against EAE is effective only when development of the disease depends on the NLRP3 inflammasome. Signal. 5, ra38, 2012. (F1000)
  26. Inoue M, Williams KL, Gunn MD, Shinohara ML. NLRP3 inflammasome induces chemotactic immune cell recruitment in the CNS in a mouse EAE model. Proc Natl Acad Sci U S A. 2012 109:10480-5.
  27. Lin Y, Jones-Mason ME, Inoue M, Iavarone A, Lasorella A, Li QJ, Shinohara ML, Zhuang Y. Transcriptional regulator Id2 is required for the CD4 T cell immune response in the development of experimental autoimmune encephalomyelitis. J Immunol. 189:1400-5, 2012
  28. Michalek RD, Gerriets VA, Nichols AG, Inoue M, Kazmin D, Chang CY, Dwyer MA, Nelson ER, Pollizzi KN, Ilkayeva O, Giguere V, Zuercher WJ, Powell JD, Shinohara ML, McDonnell DP, Rathmell JC. Estrogen-related receptor-α is a metabolic regulator of effector T-cell activation and differentiation. Proc Natl Acad Sci U S A. 108:18348-53, 2011. (F1000)
  29. Inoue M, Moriwaki Y, Arikawa T, Chen YH, Oh YJ, Oliver T, Shinohara ML. Cutting edge: Critical role of intracellular osteopontin in antifungal innate immune responses. J Immunol. 186:19-23, 2011.
  30. Inoue M, Shinohara ML. Intracellular osteopontin (iOPN) and immunity. Immunol Res. 49:160-72, 2011.
  31. Ma L, Uchida H, Nagai J, Inoue M, Aoki J, Ueda H. Evidence for de novo synthesis of lysophosphatidic acid in the spinal cord through phospholipase A2 and autotaxin in nerve injury-induced neuropathic pain. J Pharmacol Exp Ther. 333:540-6, 2010.
  32. Ma L, Uchida H, Nagai J, Inoue M, Chun J, Aoki J, Ueda H. Lysophosphatidic acid-3 receptor-mediated feed-forward production of lysophosphatidic acid: an initiator of nerve injury-induced neuropathic pain. Mol Pain. 5:64, 2009.
  33. Ma L, Matsumoto M, Xie W, Inoue M, Ueda H. Evidence for lysophosphatidic acid 1 receptor signaling in the early phase of neuropathic pain mechanisms in experiments using Ki-16425, a lysophosphatidic acid 1 receptor antagonist. J Neurochem. 109:603-10, 2009.
  34. Inoue M, Ma L, Aoki J, Ueda H. Simultaneous stimulation of spinal neurokinin 1 and NMDA receptors produces lysophosphatidylcholine, which undergoes autotaxin-mediated conversion to lysophosphatidic acid, an initiator of neuropathic pain. Neurochemistry 107: 1556-65, 2008.
  35. Inoue M, Xie W, Matsushita Y, Chun J, Aoki J, Ueda H. Lysophosphatidylcholine induces neuropathic pain through an action of autotaxin to generate lysophosphatidic acid. 152:296-8, 2008.
  36. Inoue M, Ma L, Aoki J, Chun J, Ueda H. Autotaxin, a synthetic enzyme of lysophosphatidic acid (LPA), mediates the induction of nerve-injured neuropathic pain. Molecular Pain 4:6, 2008.
  37. Matsumoto M, Xie W, Inoue M, Ueda H. Evidence for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents. Molecular Pain 3:41, 2007.
  38. Inoue M, Yamaguchi A, Kawakami M, Chun J, Ueda H; Loss of spinal substance P pain transmission under the condition of LPA1 receptor-mediated neuropathic pain. Molecular Pain 2:25, 2006
  39. Matsumoto M, Inoue M, Hald A, Xie W, Ueda H. Inhibition of Paclitaxel-induced A-fiber-Hypersensitization by Gabapentin. J Pharmacol Exp Ther. 318:735-40, 2006.
  40. Matsumoto M, Inoue M, Hald A, Yamaguchi A and Ueda H; Characterization of three different sensory fibers by use of neonatal capsaicin treatment, spinal antagonism and a novel electrical stimulation-induced paw flexion test. Mol Pain. 2:16, 2006.
  41. Matsumoto M, Inoue M, Ueda H. NSAID zaltoprofen possesses novel anti-nociceptive mechanism through blockage of B2-type bradykinin receptor in nerve endings. Neurosci Lett. 397:249-53, 2006
  42. Inoue M, Rashid MH, Fujita R, Contos JJ, Chun J, UEDA H: Initiation of neuropathic pain requires lysophosphatidic acid receptor signaling. Nature Med; 10:712-718,2004.
  43. Rashid MH, Inoue M, Toda K, and Ueda H: Loss of peripheral morphine-analgesia contributes to the reduced effectiveness of systemic morphine in neuropathic pain. J Pharmacol Exp Ther. 309:380-387, 2004.
  44. Rashid MH, Inoue M, Matsumoto M, and Ueda H: Switching of bradykinin-mediated nociception following partial sciatic nerve injury in mice. J Pharmacol Exp Ther. 308:1158-64, 2004.
  45. Inoue M, Mishina M and Ueda H. Locus-specific rescue of GluRepsilon1 NMDA receptors in mutant mice identifies the brain regions important for morphine tolerance and dependence. Neurosci. 23:6529-6536, 2003. (F1000)
  46. Inoue M, Kawashima T, Takeshima H, Calo G, Inoue A, Nakata Y, Ueda H. In vivo pain-inhibitory role of nociceptin/orphanin FQ in spinal cord. J Pharmacol Exp Ther. 305: 495-501, 2003
  47. Rashid MH, Inoue M, Bakoshi S & Ueda H. Increased expression of vanilloid receptor 1 on myelinated primary afferent neurons contributes to the antihyperalgesic effect of capsaicin cream in diabetic neuropathic pain in mice. J Pharmacol Exp Ther 306: 709-717,2003.
  48. Rashid MH, Inoue M, Kondo S, Bakoshi S, Ueda H.. Novel expression of vanilloid receptor 1 (VR1) on capsaicin-insensitive fibers accounts for the analgesic effect of capsaicin cream in neuropathic pain. J Pharmacol Exp Ther 304: 940-948 ,2003.
  49. Inoue M, Kawashima T, Allen RG, Ueda H. Nocistatin and prepro-nociceptin/orphanin FQ 160-187 cause nociception through activation of Gi/o in capsaicin-sensitive and of Gs in capsaicin-insensitive nociceptors, respectively.J Pharmacol Exp Ther. 306:141-6, 2003
  50. Inoue M, Rashid MH, Kawashima T, Matsumoto M, Meda T, Kishioka S and Ueda H. The algogenic-induced nociceptive flexion test in mice: studies on sensitivity of the test and stress on animals. Brain Res. Bulletin 60: 275-81, 2003
  51. Ueda H, Inoue M and Mizuno K. New Approaches to study the development of morphine tolerance and dependence; In: Life Sci.; 74: 313-320, 2003.
  52. Ono T, Inoue M, Rashid MH, Sumikawa K, Ueda H.Stimulation of peripheral nociceptor endings by low dose morphine and its signaling mechanism. Neurochem Int. 41:399-407, 2002.
  53. Inoue M, Matsunaga S, Rashid MH, Yoshida A, Mizuno K, Sakurada T, Takeshima H, Ueda H, Pronociceptive Effects of Nociceptin/Orphanin FQ (13-17) at Peripheral and Spinal Level in Mice. Pharmacol. Exp. Ther., 299: 213-219, 2001.
  54. Ueda H, Inoue M, Matsumoto T. Protein kinase C-mediated inhibition of mu-opioid receptor internalization and its involvement in the development of acute tolerance to peripheral mu-agonist analgesia. J Neurosci 21:2967-73, 2001.
  55. Ueda H, Inoue M, Yoshida A, Mizuno K, Yamamoto H, Maruo J, Matsuno K, Mita S, Metabotropic neurosteroid/sigma receptor involved in stimulation of nociceptor endings of mice. J. Pharmacol. Exp. Ther. 298: 703-710, 2001.
  56. Tan-No K, Ohshima K, Taira A, Inoue M, Niijima F, Nakagawasai O, Tadano T, Nylander I, Silberring J, Terenius L, Kisara K. Antinociceptive effect produced by intracerebroventricularly administered dynorphin A is potentiated by p-hydroxymercuribenzoate or phosphoramidon in the mouse formalin test. Brain Res 891:274-280, 2001.
  57. Inoue M, Mishina M, Ueda H.: Enhanced nociception by exogenous and endogenous substance P given into the spinal cord in mice lacking NR2A/ε1, an NMDA receptor subunit. J. Pharmacol., 129:239-241, 2000.
  58. Inoue M, Ueda H.:Protein kinase C-mediated acute tolerance to peripheral mu-opioid analgesia in the bradykinin-nociception test in mice. Pharmacol. Exp. Ther., 293: 662-669, 2000.
  59. Ueda H., Inoue M: In vivo signal transduction of nociceptive response by kyotorphine (tyrosine-arginine) through Gi and inositol trisphosphate-mediated Ca2+ Mol. Pharmacol., 57: 108-115, 2000.
  60. Ueda H, Inoue M, Weltrowska G and Schiller PW: An enzymatically stable kyotorphin analog induces pain in subattomol doses. Peptides, 21:717-722, 2000.
  61. Ye X, Inoue M and Ueda H: Botulinum toxin C3 inhibits hyperalgesia in partial sciatic nerve injury mice. J. Pharmacol. 83:161-163, 2000.
  62. Renbäck K, Inoue M, Yoshida A, Nyberg F Ueda H.:Vzg-1 / lysophosphatidic acid-receptor involved in peripheral pain transmission. Brain Res., 75:350-354, 2000.
  63. Ueda H, Inoue M, Takeshima H and Iwasawa Y. Enhanced spinal nociceptin receptor expression develops morphine tolerance and dependence. Neurosci. 20:7640-7647, 2000.
  64. Ueda H, Matsunaga S, Inoue M, Yamamoto Y and Hazato T. Complete inhibition of purinoceptor agonist-induced nociception by spinorphin, but not by morphine. Peptide, 21:1215-1221, 2000.
  65. Inoue M, Yamada T Ueda H.: Low dose of kyotorphin (tyrosine-arginine) induces nociceptive responses through a substance P release from nociceptor endings. Brain Res., 69: 302-305,1999.
  66. Inoue M, Shimohira I, Yoshida A, Zimmer A, Takeshima H, Sakurada T, Ueda H: Dose-related opposite modulation by nociceptin/orphanin FQ of substance P-nociception in the nociceptors and spinal cord. Pharmacol. Exp. Ther., 291: 308-313, 1999.
  67. Renback K, Inoue M, Ueda H.:Lysophosphatidic acid-induced, pertussis toxin-sensitive nociception through a substance P release from peripheral nerve endings in mice. Lett., 270: 59-61,1999.
  68. Ueda H., Inoue M: Peripheral morphine analgesia resistant to tolerance in chronic morphine-treated mice. Lett., 266:105-108,1999.
  69. Sakurada T, Yuhki M, Inoue M, Sakurada C, Tan-No K, Ohba M, Kisara K, Sakurada:Opioid activity of sendide, a tachykinin NK1 receptor antagonist. J. Pharmacol., 369: 261-266,1999.
  70. Sakurada C, Watanabe C, Inoue M, Tan-No K, Ando R, Kisara K, Sakurada T: Spinal actions of GR73632, a novel tachykinin NK1 receptor agonist. Peptides, 20:301-304,1999.
  71. Sakurada T, Katsuyama S, Sakurada S, Inoue M , Tan-No K, Kisara K, Sakurada C, Ueda H, Sasaki J: Nociceptin-induced scratching, biting and licking in mice: involvement of spinal NK1 receptors. Br. J. Pharmacol., 127:1712-1718,1999.
  72. Inoue M, Tokuyama S, Nakayamada H, Ueda H. In vivo signal transduction of tetrodotoxin-sensitive nociceptive responses by substance P given into the planta of the mouse hind limb. Cell Mol Neurobiol. 18:555-61, 1998.
  73. Inoue M, Kobayashi M, Kozaki S, Zimmer A, Ueda H. Nociceptin/orphanin FQ-induced nociceptive responses through substance P release from peripheral nerve endings in mice. Proc Natl Acad Sci U S A. 95:10949-53, 1998
  74. Tan-No K, Taira A, Inoue M, Ohshima K, Sakurada T, Sakurada C, Nylander I, Demuth HU, Silberring J, Terenius L, Tadano T, Kisara K. Intrathecal administration of p-hydroxymercuribenzoate or phosphoramidon/ bestatin-combined induces antinociceptive effects through different opioid mechanisms. 32:411-5, 1998.
  75. Tokuyama S, Inoue M, Fuchigami T, Ueda H. Lack of tolerance in peripheral opioid analgesia in mice. Life Sci. 62:1677-81, 1998.
  76. Ueda H, Yamaguchi T, Tokuyama S, Inoue M, Nishi M, Takeshima H. Partial loss of tolerance liability to morphine analgesia in mice lacking the nociceptin receptor gene. Neurosci Lett. 237:136-8, 1997.
  77. Inoue M, Nakayamada H, Tokuyama S, Ueda H. Peripheral non-opioid analgesic effects of kyotorphin in mice. Neurosci Lett. 236:60-2, 1997.
  78. Tan-No K, Taira A, Sakurada T, Inoue M, Sakurada S, Tadano T, Sato T, Sakurada C, Nylander I, Silberring J, Terenius L, Kisara K. Inhibition of dynorphin-converting enzymes prolongs the antinociceptive effect of intrathecally administered dynorphin in the mouse formalin test. Eur J Pharmacol. 314:61-7, 1996.