# **David Benfield Award Competition**



### **Oral Presentation**

| Presenter           | Affiliation   | Title                                             |
|---------------------|---------------|---------------------------------------------------|
|                     |               | Comparative adsorption of Porcine Reproductive    |
| Joaquin             | University of | and Respiratory Syndrome Virus strains to         |
| Alvarez-Norambuena  | Minnesota     | Minnesota soils                                   |
| Guilherme Arruda    | Iowa State    | Swine disease reporting system: a tool for        |
| Cezar               | University    | emerging swine disease investigation              |
|                     |               | A swine influenza candidate vaccine platform      |
| Gabriela do         | Cornell       | based on a consensus sequence for                 |
| Nascimento          | University    | hemagglutinin of H1 subtype                       |
|                     |               | A trivalent Pichinde virus vectored vaccine       |
|                     |               | expressing HA proteins of H1N1, H1N2 and          |
|                     | University of | H3N2 influenza viruses elicit a balanced          |
|                     | Nebraska-     | protective immunity against influenza infection   |
| Sushmita Kumari     | Lincoln       | of pigs                                           |
|                     |               | Engineering an African Swine Fever Virus          |
|                     | Ohio State    | Multiepitope Protein for Use in an ASF            |
| Carolyn Lee         | University    | Nanoparticle-based Subunit Vaccine                |
|                     |               | Detection and frequency of potential zoonotic     |
| Milagros Lostaunau  | FMV UNMSM     | Rotavirus in suckling pigs in the south of Peru   |
|                     |               | Addressing biocontainment through                 |
|                     |               | environmental contamination assessment in         |
|                     | University of | farms housing PRRS Lineage 1C 1-4-4 positive      |
| Claudio Melini      | Minnesota     | pigs                                              |
|                     |               | Senecavirus a (SVA) and Foot-and-Mouth Disease    |
|                     |               | Virus (FMDV) Viral-Like-Particle (VLP) Based      |
|                     | Chulalongkor  | Vaccines Induced Cellular and Humoral Immune      |
| Kepalee Saeng-chuto | n University  | Response in Pigs                                  |
|                     | Iowa State    | PRRSView: An analytical platform for the          |
| Anugrah Saxena      | University    | assessment of PRRSV ORF5 genetic sequences        |
|                     | Ohio State    | Contrasting PRRSV temporal lineage patterns at    |
| Yi-Fan Shen         | University    | the production system, state, and regional levels |



# **Lightning talk + Poster Presentation\***

| Presenter                | Affiliation             | Title                                               |
|--------------------------|-------------------------|-----------------------------------------------------|
|                          | South Dakota State      | Overexpression of IFITM3 induces autophagy in       |
| Shamiq Aftab             | University              | H1299 cells and enhances SVA replication            |
|                          |                         | Switching immune target: applying MJPRRS            |
|                          | College of Veterinary   | classifications to characterize how PRRSV GP5-      |
| Julia Baker              | Medicine                | epitope C changes over time                         |
|                          |                         | Identification of conserved amino acid residue on   |
|                          | University of           | PRRSV glycoprotein 2 critical for infectivity in    |
| Jayeshbhai Chaudhari     | Nebraska-Lincoln        | macrophages                                         |
| Kassanddra Durazo-       | University of           | PRRSV Infection of alveolar macrophages             |
| Martinez                 | Nebraska-Lincoln        | Promotes Inflammation and Inhibits Apoptosis        |
|                          |                         | GP5-specific antibody response to porcine           |
| la o z me                | University of           | reproductive and respiratory syndrome virus         |
| Jing Huang               | Minnesota               | challenge in vaccinated swine                       |
|                          |                         | Furin cleavage is required for swine acute diarrhea |
|                          | Chungnam National       | syndrome coronavirus spike protein-mediated cell–   |
| Jinman Kim               | University, Korea       | cell fusion                                         |
| 1000 1000 1000 1000 1000 | University of           | Identification and characterization of nidovirus-   |
| Mehdi Maury Laouedj      | Montreal                | host molecular interactions                         |
|                          |                         | Experimental pig study comparing pathogenicity of   |
|                          | L. 2011. / 12 Al.       | PRRSV 1-4-4 L1C variant with other Lineage 1        |
| Gaurav Rawal             | Iowa State University   | strains                                             |
|                          | Univesity of Illilnois  | Deletion of CD163 domain five protects pigs from    |
|                          | at Urbana-              | infection with porcine reproductive and respiratory |
| Brianna Salgado          | Champaign               | syndrome virus (PRRSV) infection                    |
|                          |                         | Porcine reproductive and respiratory syndrome       |
|                          | University of Illinois  | virus induces degradation of the promyelocytic      |
| Chia-Ming Su             | Urbana-Champaign        | leukemia protein and promotes viral replication     |
|                          |                         | Investigation of fetal gene expression patterns in  |
|                          |                         | the liver, heart, and kidney for prediction of      |
| Kristen Walker           | USDA APDL               | reproductive failure                                |
|                          |                         | Establish a pregnant sow-neonatal pig model         |
| Lufan Yang               | University of Illinois  | system to study influenza-microbiome interactions   |
|                          | 7 7 7 7 7 7 7 7 7 7 7 7 | Characterization of the subclinical infection of    |
|                          |                         | porcine deltacoronavirus in grower pigs under       |
| Lu Yen                   | Iowa State University   | experimental conditions                             |

<sup>\*</sup>Students in lightning talk competition will also be evaluated in poster presentation for the same topic.



## **Poster Presentation**

| Presenter                        | Affiliation                      | Title                                                                                                                             |
|----------------------------------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Betsy Armenta-Leyva<br>(1)       | Iowa State University            | Effect of heating or diluting swine oral fluid samples on qPCR detection                                                          |
| Betsy Armenta-Leyva<br>(2)       | Iowa State University            | Efficiency standardized PRRSV serum RT-qPCR results                                                                               |
| Chi Chen                         | University of Illinois           | Establishing pregnant sow-fetus models to assess safety and efficacy of influenza vaccines                                        |
| Whitney Lewis                    | University of Texas at<br>Austin | Developing DNA-nanopore Sensors for Direct Detection and Differentiation of Infectious and Noninfectious Porcine Viruses          |
| Berenice Munguia-<br>Ramirez (1) | Iowa State University            | Effect of freeze-thaw on PRRSV RNA detection by RT-qPCR                                                                           |
| Berenice Munguia-<br>Ramirez (2) | Iowa State University            | Use of a porcine endogenous reference gene (internal sample control) in a PRRSV RT-qPCR                                           |
| Marie-Jeanne Pesant              | Université de Montréal           | Tenofovir and pro-drug tenofovir disoproxil fumarate inhibit porcine reproductive and respiratory syndrome virus [PRRSv] in vitro |
| Kaylyn Rudy                      | Purdue University                | Viral load and inflammatory response in non-<br>lymphoid fetal tissues following late gestation<br>PRRSV-2 challenge              |
| Rachel Schambow                  | University of Minnesota          | A participatory approach to enhancing the passive surveillance of African and Classical swine fevers                              |
| Grzegorz Tarasiuk                | Iowa State University            | Effect of pen size and number of ropes on behaviors associated with oral fluid sampling                                           |



#### **Oral Presentation Evaluation Criteria**

#### Impact of research – 10 points

• The student clearly presented the importance of research problem.

#### Actual data - 40 points

- Experimental design, procedures & methods were clearly stated.
- The quality and quantity of the experiments was appropriate.
- Appropriate controls and statistical methods were utilized.
- Conclusions were reflective of the data presented.

#### **Presentation - 50 points**

- The presentation was well organized and clearly delivered.
- All the figures and tables were clearly explained.
- Figures and tables were easy for the audience to interpret.
- Slides were easily read at the back of the room.
- Student used good public speaking technique.
- Presentation was delivered in the allocated time.
- Responses to questions demonstrated the student's ability to defend the work (not apply to lightning presentation).

#### Total – 100 points



#### **Poster Presentation Evaluation Criteria**

#### **Impact of research - 20 points**

- Background and rationale: Importance of research problem and/or disease conditions are clearly stated.
- Objectives: The objectives are clearly stated.

#### **Actual research - 50 points**

- The study design is clear and appropriate.
- The analysis (statistics) is clear and appropriate.
- The results are clear and correctly presented.
- Conclusions are reflective of the data presented (no over-interpretation).
- · Limitations are addressed/recognized

#### **Presentation – 30 points**

- Poster is well-organized (adequate/ordered introduction, methods, results and conclusions. The reader could understand the poster in the absence of the presenter)
- Poster is visually appealing (consider: font type/ size, Table/ Figure size-easy to read from 3-feet away)
- The amount of information is appropriate (not too little, not extensive; no large amount of texts that are hard to read)
- Responses to questions demonstrated the student's ability to understand the work.