Anesthesia & Analgesia in Reptiles

Jennifer N. Langan, DVM, Dipl. ACZM, Dipl. ECZM University of Illinois - College of Veterinary Medicine Chicago Zoological Society – Brookfield Zoo

UIUC Fall Conference – September 18, 2001

Resources

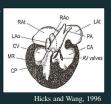
- Clinical Anatomy and Physiology of Exotic Species
 B. O'Malley
- Reptile Medicine and Surgery, Vol. 1&2
 D. Mader
- Zoo and Wild Animal Medicine
 M. Fowler and E. Miller
- Zoo Animal & Wildlife
 Immobilization and Anesthesia
 G. West, D. Heard, N. Caulkett

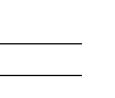
Introduction

- Common as pets, in zoos and research settings
- □ Safe & effective anesthesia
- □ Minimize stress & discomfort
- □ Wide diversity of species

Overview

- □ Unique anatomy and physiology
- Anesthesia
 - Preanesthetic assessment
 - Premedication
 - Induction
 - Maintenance
 - Recovery
- Analgesia


Thermoregulation


- □ Poikilothermic
- Preferred Optimal Temperature Zone (POTZ)
 - Metabolic needs
 - Drug absorption, metabolism, excretion
- □ Hypothermia
 - Immunosuppression
- □ Hyperthermia
 - Vasodilation

Vascular System

- □ Three chambered heart
- Functional cardiovascular separation
- Shunting of blood from lungs

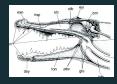
Vascular System

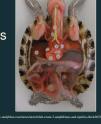
- □ Renal portal system
 - Administer parenteral drugs in the cranial half of the body

The effect of the renal portal system on pharmacokinetic parameters in the red-eared slider (*Trachemys scripta elegans*)

Holz P, Barker IK, Burger JP, Crawshaw GJ, Conlon PD. J Zoo Wild Med. 1997; 28(4):386-93

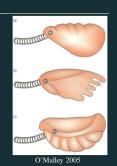
Respiratory System

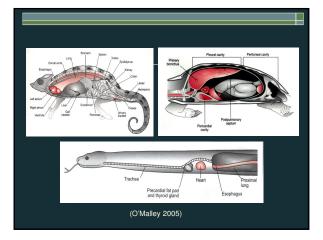

Rostral glottis



Respiratory Anatomy

- Chelonia
 - Complete tracheal rings
- □ Epiglottic flap crocodilians


Lungs


- Lizards & chelonia
 - Paired, saclike
- □ Snakes
 - Functional right
 - Vestigial left
 - Air sac
- □ More fragile

Lungs

- Unicameral
- Single chamber
- □ Paucicameral
 - Subchambers with single bronchus
- Multicameral
 - Multiple chambers with small airways

Respiratory Physiology

- Episodic breathing and apnea
- □ Lack a functional diaphragm
 - Crocs Diaphragmaticus
- Active pumping process negative pressure
 - Intercostal muscles & limbs

Respiratory Physiology

- Temperature dependent
- □ Ventilation driven by PaO₂
- □ Mediated by changes in pH & PaCO₂
- □ Shunting / dive reflex
- Anaerobic metabolism
 - Metabolic acidemia

Physiologic Parameters

- Heart rate
- Respiratory rate
- Body temperature

- □ No "normals"
- Dependent on species, size, sex, environment

Preanesthetic Assessment

- Make every effort to evaluate patient prior to physical examination / anesthesia
- Have evolved to depend on their ability to hide illness to survive
- Not always possible with free ranging species
- □ Explain risk to owners / collaborators

Preanesthetic Assessment

Reason for anesthesia

Physical Examination

- □ Body condition
- □ Trauma and injuries

- Nutritional status
- □ Hydration
- Attitude

Preanesthetic Assessment

- □ Physical exam
- □ Reason for anesthesia
- CBC, chemistry panel

Preanesthetic Assessment

- Physical exam
- Reason for anesthesia
 - CBC, chemistry panel
 - Imaging

Preanesthetic Assessment

- □ What can be done without anesthesia?
 - Safe for patient
 - □ Injury, myopathy, stress
 - Safe for you
 - □ Injury, stress

Fluid Therapy

- Hydration status
 - Skin turgor, CRT, PCV/TP
- □ Route of administration
- Stable vs. debilitated patients
- □ Balanced electrolyte sol'n
 - Maint: 15-30 ml/kg/d
 - Surgery: 1 ml/kg/hr

8

Fasting

- □ Should be without food for 24-72 hours
- □ Longer in some species
- Dependent on size, diet, health

Drug Administration

Drug Administration

□ IV

□ IM

Drug Administration

□ IV

□ IM □ ICe

Drug Administration

□ IV

□ IM

□ ICe

□ IO

Inhaled

Premedication

- A2-adrenergic agonists dexmedetomidine, medetomidine
 - Minimal sedation alone
 - Species effects variable (iguanas)
- □ Benzodiazepines midazolam
 - Relaxation, slight sedation/use with ketamine

Dexmed 70-100 mcg/kg + Midazolam 1-2 mg/kg + Ketamine 1-5 mg/kg SC/IM

Premedication

□ Opiods

- □ Alone or in combination
- Analgesia prior to painful procedures
- Reversible
- Differing receptor distribution among reptiles

Premedication

- □ Opiods
 - Butorphanol κ agonist, μ antagonist
 - Buprenorphine µ partial agonist
 - Morphine μ full agonist

Medet 100 mcg/kg + Midazolam 2 mg/kg + Morphine 1 mg/kg SC/IM

Induction

- Isoflurane / Sevoflurane
- □ Mask / tube / chamber

Induction

- Apnea
- □ Vascular shunting
- □ Slow, stressful

Induction

- Propofol
 - Hypnotic
 - Binding of GABA receptor
 - Rapid effects, short recoveries
 - IV administration
 - Jugular, brachial plexus, tail
 - No analgesia
 - Respiratory depression & apnea
 - Best used to effect (5-15 mg/kg)

Induction

- □ Ketamine / Telazol Combinations
 - Safe, intramuscular
 - Good cardiac output
 - Some analgesia
 - Not reversible
 - Prolonged recovery

Maintenance

- □ Intubation
- □ Non-rebreathing circuit (<3 kg BW)
- □ Manual ventilation
 - 1-2 breaths/min

Maintenance

- Cranial to caudal
- Loss of palpebral reflex
- Loss of righting reflex
- +/- Maintain corneal reflex
- Sudden responsiveness

Maintenance

- Gas anesthesia
 - Isoflurane, sevoflurane
 - Mixed information on differences
 - Induction vs recovery data
 - □ Hernandez-Divers, S.J. et al 2005 Green iguanas
 - Bertelson, et al. 2005 Dumeril's monitors
 - Generally no appreciable difference in practice

Supportive Care

- □ Eye lubrication
- □ Heat source
 - Very important in small animals
 - Bair hugger, water blanket, Heat packs

Intermittent positive pressure ventilation

- □ Loss of motor activity decreases ventilation
- □ Maintain oxygenation
 - Tidal volume 10 ml/kg
 - 1-2 breaths/min
- □ "Sigh" breath
- \square 10 cm H₂O

Monitoring

- □ Challenging to assess depth at times
- □ Species differences with reflexes
 - Snakes no palpebral/corneal reflexes

Monitoring

- Anesthetic Depth
 - Muscle toneRighting reflex
 - Spontaneous respiration
 - Jaw tone
 - Response to stimuli
 - Palpebral & corneal reflexes

Monitoring equipment

- Doppler
- □ ECG
- □ Pulse oximeter

- □ Blood pressure
- □ Temperature probes

Respiratory Monitoring

- Prone to apnea
- □ Shunting
- Pulse oximetry & capnography not validated
- □ Monitor trends

Recovery

- Ventilate with room air
 Increased PaO₂ decreases ventilation
- Supplemental heat
- Stimulation
- Analgesia
- □ Patience



Recovery

- Monitor very closely until sternal, alert and responsive
- Prevent self trauma & intraspecific trauma
- Nutritional support

Analgesia

- Definition
- □ More difficult to assess
- □ How to assess pain
- □ Do they perceive pain
- □ Species specific recognition

Recognizing Pain

- □ Change appetite
- □ Aggression
- □ Self-mutilation
- □ Isolation

□ Examples of painful cases

□ Changes in behavior

Shell fractures, bites, burns, ocular, stomatitis

Analgesic Agents

□ Opiods

- Butorphanol
- Buprenorphine
- Morphine
- NSAIDs
 - Meloxicam
 - Ketoprofen
- □ Local anesthetics

Opiod Analgesia in Reptiles

□ Sladky et al, 2007

Analgesic efficacy and respiratory effects of butorphanol and morphine in turtles"

- Butorphanol showed <u>minimal</u> analgesic efficacy in turtles, respiratory depression with high dose (28 mg/kg)
- Morphine (1.5 mg/kg) provided <u>analgesia</u> but also caused <u>respiratory depression</u>

Opiod Analgesia in Reptiles

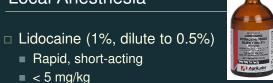
- □ Sladky et al, 2008
 - Butorphanol high doses (20 mg/kg)
 - □ Analgesia in corn snakes at 8 hr
 - Morphine high doses (10 & 20 mg/kg)
 - □ Analgesia in bearded dragons at 8 hr

Opiod Analgesia in Reptiles

- □ Tramadol 10-25 mg/kg PO/SC
 - Red Eared Sliders
 - Less respiratory depression than morphine
 - Thermal nociception
 - PO 6-96 hr
 - SC 12-48 hr

NSAIDs

- Not controlled
- □ Injectable and oral
- Lack of pharmacologic data & efficacy studies
- □ Likely significant species variation
- Use in well hydrated patients without renal compromise


NSAIDs

- □ Melxoicam 0.1 0.2 mg/kg
 - IM, IV, PO
 - q 24-48 hr
 - PK for oral and IV in green iguanas
 - Evidence of enterohepatic recycling
- □ Ketoprofen 2 mg/kg
 - IM, SC
 - q 24-48 hr

Local Anesthesia

- □ Good adjunct for painful procedures
- Block nerve transmission peripherally
- Possible toxicity

Local Anesthesia

- Rapid, short-acting < 5 mg/kg</p>
- □ Bupivacaine (0.25%, dilute to 0.125%)
 - Delayed, long-acting
 - < 2 mg/kg</p>

Local Anesthesia

- □ Peripherally
- Intrathecally

Sterilization of hybrid Galapagos tortoises (*Geochelone nigra*) for island restoration. Part 2: phallectomy of males under intrathecal anaesthesia with lidocaine

S. Rivera, S. J. Divers, S. E. Knafo, P. Martinez, L. J. Cayot, W. Tapia-Aguilera, J. Flanagan, Veterinary Record (2011) 168, 78

Eastern Box Turtle with aural abscess

- □ Morphine (1.5 mg/kg) 2 hr prior to procedure
- □ Include medetomidine 25-50 mcg/kg IM for relaxation if needed
- □ Local block with lidocaine
- Post-op meloxicam 0.2 mg/kg

EBD Shell Repair

- □ Consider minimally invasive techniques
- Stabilize patient
- $\hfill\square$ Assess hydration, mentation, PCV
- \square Premed:
 - Morphine (1.5 mg/kg)2 hr before

EBD Shell Repair cont.

- A. Med 25-50 mcg/kg + Ket 5 mg/kg
- B. Or Propofol 3-6 mg/kg IV

□ Intubate and ventilate

- Post op
 - Meloxicam 0.2 mg/kg

+/- Morphine

Conclusions

- Same principles of anesthesia & analgesia
- □ Assess risk, need & potential for pain
- Remember individual physiology and anatomy
- □ More research needed

Thank You

