Intramedullary Pins, Interlocking Nails, and Orthopedic Wire in Fracture Management

Ann L. Johnson DVM, MS
Diplomate ACVS
Professor

Fracture Assessment Indications

- 8-10,4-7: Long oblique fractures, avulsion fractures
- 8-10, 4-7:
 Metaphyseal or physeal fractures
- 4-7,0-3:
 Comminuted
 fractures use with
 ESF or plate

Fracture Assessment Indications

8-10,4-7,0-3:

 applicable for all fracture
 assessment
 indications

Indications for IM Pins

- Humerus, femur, and tibia
- Diaphyseal fractures
- Supplemented with orthopedic wire, ESF or plates
- Crossed pins for physeal or metaphyseal fractures

Mechanics of IM Pins

- Resists bending loads
- No resistance to axial or rotational load
- Movement leads to pin migration

Equipment and Supplies

- Smooth, round, 316L stainless steel rods
- Inserted into the medullary cavity for fracture stabilization

Intramedullary Pin Points

- A. Trochar points have a triple cutting edge and cut through cancellous bone easily
- B. Chisel points are slightly more effective in cutting through dense cortical bone

End-threaded Steinmann Pin

- Increased holding power in cancellous bone
- May prevent migration after bone fills into threads
- May not provide increased early holding power
- Negative profile threads act as a stress concentrator and may result in premature failure

Application of IM Pins

Tibia

Pin size selected by observing medullary canal size radiographically and directly

IM Pin Size

- Canine bone is curved
- Select a pin which can safely traverse the canal and seat in the metaphyses without affecting reduction
- Pin generally 60-70% of canal width at the isthmus

- Medial tibial plateau
- Halfway between the tibial tuberosity and the medial condyle

- Reduce fracture
- Seat pin distally
- Check pin length

Check fracture stability

Multiple Pins or Wires

 Multiple crossed or divergent K wires (or pins) used for metaphyseal or physeal fractures in animals with high fracture assessment scores

Postoperative Evaluation

Application of Crossed Pins

Follow Up Evaluation

Postoperative Care for IM Pins

- Exercise limitations, no intensive aftercare
- Instability
 may result in
 limited limb
 function
- Pin removal after healing

Functional Period for IM Pins

- Good stability for a short time, if the fracture is stable
- Friction between pin and bone prevents premature pin migration

Complications with IM Pins

- Stress associated with unstable fractures causes micro-motion at the pin-bone interface, bone resorption, and premature pin migration
- Sciatic entrapment

Interlocking Nail

- Solves limitations of IM pins
- Resists compression
- Resists rotation
- Allows biological techniques

Indications and Mechanics

- Fractures of the humerus, femur, and tibia
- Interlocking screws allow implants to resist axial, bending and rotational forces
- Interlocking hold on the bone

Resistant to all forces

Equipment and Supplies

 Interlocking nails are smooth, round, 316L stainless steel rods with holes which allow screw fixation for fracture stabilization

Application of Interlocking Nails

Reaming the medullary canal

Inserting the nail

Application of Interlocking Nails

Preparing the hole

Postoperative Care and Functional Period for Interlocking Nails

- Exercise limitations, no intensive aftercare
- Implants left in place unless causing problems
- Good stability for a long time, especially if the fracture shares loadbearing

Complications with ILN

- Difficulty with guide
- Implant failure
- Infection
- Malunion
- Difficult to remove

Orthopedic Wire

 Cerclage wire or hemicerclage wire applied to reconstruct long oblique fracture lines

Indications for Orthopedic Wire

- Adds stability to reconstructed long oblique or spiral fractures
- "Most commonly used implant and the most commonly misused implant in veterinary orthopedics"

Mechanics of Wire

- Supplemented with other implants to provide resistance to axial and rotational forces
- Friction generated at fracture lines resists axial, bending and rotational forces in reconstructed long oblique or spiral fractures

Wire for Stability

- Provides stability and resists loads
- Fracture length = 3 x medullary canal diameter
- Maximum of 3 (preferably only 2) fracture fragments
- Fracture anatomically reduced
- At least 2 and preferably 3 wires per fracture line

Wire for Adaptation

- Holds fracture fragments in place (adaptation), other implants provide stability to resist loads
- More than 2 to 3 fragments
- Fracture lines not sufficiently long
- Misuse leads to complications

Equipment and Supplies

- Best used for stability
- Use largest wire possible
- Minimum of 2 wires per fracture
- Place wires ½ to 1 cm apart
- Start at least ½ cm from fracture end

- Start twist
- Apply wire twisting pliers
- Pull and twist
- Twist should be even (A)
- Cut wire

Loop Wire and Tightener

Postoperative Care and Functional Period for Wire

- Good stability for a short time, with reconstructed and stable fracture
- Friction between wire and bone prevents wire motion
- Rarely removed

Complication with Wires

Fracture instability — Pin migration — Wire interferes with healing

Tension Band Wire

- Used to secure fragments under tension (avulsion fractures or osteotomies
- Converts tensile
 forces to
 compressive forces
 at the fracture

Equipment and Supplies

Application of Tension Band Wire

Postoperative Care

- Special post operative care not required
- Removal after healing if soft tissue irritation occurs

