Anesthesia & Analgesia in Reptiles

Jennifer N. Langan, DVM, Dipl. ACZM, Dipl. ECZM
University of Illinois - College of Veterinary Medicine
Chicago Zoological Society – Brookfield Zoo
UIUC Fall Conference – September 18, 2001

Resources
- Clinical Anatomy and Physiology of Exotic Species
 - B. O’Malley
- Reptile Medicine and Surgery, Vol. 1&2
 - D. Mader
- Zoo and Wild Animal Medicine
 - M. Fowler and E. Miller
- Zoo Animal & Wildlife Immobilization and Anesthesia
 - G. West, D. Heard, N. Caulkett

Introduction
- Common as pets, in zoos and research settings
- Safe & effective anesthesia
- Minimize stress & discomfort
- Wide diversity of species
Overview
- Unique anatomy and physiology
- Anesthesia
 - Preanesthetic assessment
 - Premedication
 - Induction
 - Maintenance
 - Recovery
- Analgesia

Thermoregulation
- Poikilothermic
- Preferred Optimal Temperature Zone (POTZ)
 - Metabolic needs
 - Drug absorption, metabolism, excretion
- Hypothermia
 - Immunosuppression
- Hyperthermia
 - Vasodilation

Vascular System
- Three chambered heart
- Functional cardiovascular separation
- Shunting of blood from lungs

Hicks and Wang, 1996
Vascular System

- Renal portal system
 - Administer parenteral drugs in the cranial half of the body

The effect of the renal portal system on pharmacokinetic parameters in the red-eared slider (*Trachemys scripta elegans*)

Holz P, Barker IK, Burger JP, Crawshaw GJ, Conlon PD.

Respiratory System

- Rostral glottis

Endotracheal tubes
Respiratory Anatomy

- **Chelonia**
 - Complete tracheal rings

- **Epiglottic flap - crocodilians**

Lungs

- **Lizards & chelonia**
 - Paired, saclike

- **Snakes**
 - Functional right
 - Vestigial left
 - Air sac

- **More fragile**
Lungs
- Unicameral
 - Single chamber
- Paucicameral
 - Subchambers with single bronchus
- Multicameral
 - Multiple chambers with small airways

Respiratory Physiology
- Episodic breathing and apnea
- Lack a functional diaphragm
 - Crocs - Diaphragmaticus
- Active pumping process – negative pressure
 - Intercostal muscles & limbs
Respiratory Physiology
- Temperature dependent
- Ventilation driven by PaO₂
- Mediated by changes in pH & PaCO₂
- Shunting / dive reflex
- Anaerobic metabolism
 - Metabolic acidemia

Physiologic Parameters
- Heart rate
- Respiratory rate
- Body temperature
- Blood pressure / SpO₂
- No “normals”
- Dependent on species, size, sex, environment

Preanesthetic Assessment
- Make every effort to evaluate patient prior to physical examination / anesthesia
- Have evolved to depend on their ability to hide illness to survive
- Not always possible with free ranging species
- Explain risk to owners / collaborators
Preanesthetic Assessment

- Reason for anesthesia

Physical Examination

- Body condition
- Trauma and injuries
- Disease
- Nutritional status
- Hydration
- Attitude

Preanesthetic Assessment

- Physical exam
- Reason for anesthesia
 - CBC, chemistry panel
Preanesthetic Assessment

- Physical exam
- Reason for anesthesia
 - CBC, chemistry panel
 - Imaging

Preanesthetic Assessment

- What can be done without anesthesia?
 - Safe for patient
 - Injury, myopathy, stress
 - Safe for you
 - Injury, stress

Fluid Therapy

- Hydration status
 - Skin turgor, CRT, PCV/TP
- Route of administration
 - Stable vs. debilitated patients
- Balanced electrolyte sol’n
 - Maint: 15-30 ml/kg/d
 - Surgery: 1 ml/kg/hr
Fasting
- Should be without food for 24-72 hours
- Longer in some species
- Dependent on size, diet, health

Drug Administration
- IV
- IM
Drug Administration
- IV
- IM
- IGe
- IO

Drug Administration
- IV
- IM
- IGe
- IO
- PO
- Inhaled

Premedication
- A2-adrenergic agonists – dexmedetomidine, medetomidine
 - Minimal sedation alone
 - Species effects variable (iguanas)
- Benzodiazepines – midazolam
 - Relaxation, slight sedation/use with ketamine

Dexmed 70-100 mcg/kg + Midazolam 1-2 mg/kg + Ketamine 1-5 mg/kg SC/IM
Premedication

- Opioids
 - Alone or in combination
 - Analgesia prior to painful procedures
 - Reversible
 - Differing receptor distribution among reptiles

- Butorphanol – κ agonist, µ antagonist
- Buprenorphine – µ partial agonist
- Morphine – µ full agonist

Medet 100 mcg/kg + Midazolam 2 mg/kg + Morphine 1 mg/kg SC/IM

Induction

- Isoflurane / Sevoflurane
- Mask / tube / chamber
Induction

- Apnea
- Vascular shunting
- Slow, stressful

Induction

- Propofol
 - Hypnotic
 - Binding of GABA receptor
 - Rapid effects, short recoveries
 - IV administration
 - Jugular, brachial plexus, tail
 - No analgesia
 - Respiratory depression & apnea
 - Best used to effect (5-15 mg/kg)

Induction

- Ketamine / Telazol Combinations
 - Safe, intramuscular
 - Good cardiac output
 - Some analgesia
 - Not reversible
 - Prolonged recovery
Maintenance
- Intubation
- Non-rebreathing circuit (<3 kg BW)
- Manual ventilation
 - 1-2 breaths/min

Maintenance
- Cranial to caudal
- Loss of palpebral reflex
- Loss of righting reflex
- +/- Maintain corneal reflex
- Sudden responsiveness

Maintenance
- Gas anesthesia
 - Isoflurane, sevoflurane
 - Mixed information on differences
 - Induction vs recovery data
 - Generally no appreciable difference in practice

Gas anesthesia
- Isoflurane, sevoflurane
- Mixed information on differences
- Induction vs recovery data
- Generally no appreciable difference in practice
Supportive Care

- Eye lubrication
- Heat source
 - Very important in small animals
 - Bair hugger, water blanket, Heat packs

Intermittent positive pressure ventilation

- Loss of motor activity decreases ventilation
- Maintain oxygenation
 - Tidal volume 10 ml/kg
 - 1-2 breaths/min
- “Sigh” breath
- 10 cm H₂O

Monitoring

- Challenging to assess depth at times
- Species differences with reflexes
 - Snakes – no palpebral/corneal reflexes

S. Chinnadurai
Monitoring
- Anesthetic Depth
 - Muscle tone
 - Righting reflex
 - Spontaneous respiration
 - Jaw tone
 - Response to stimuli
 - Palpebral & corneal reflexes

Monitoring equipment
- Doppler
- ECG
- Pulse oximeter
- Capnograph
- Blood pressure
- Temperature probes

Respiratory Monitoring
- Prone to apnea
- Shunting
- Pulse oximetry & capnography not validated
- Monitor trends
Recovery

- Ventilate with room air
 - Increased PaO₂ decreases ventilation
- Supplemental heat
- Stimulation
- Analgesia
- Patience

Recovery

- Monitor very closely until sternal, alert and responsive
- Prevent self trauma & intraspecific trauma
- Nutritional support
Analgesia

- Definition
- More difficult to assess
- How to assess pain
- Do they perceive pain
- Species specific recognition

Recognizing Pain

- Change appetite
- Aggression
- Self-mutilation
- Isolation
- Changes in behavior
- Examples of painful cases
 - Shell fractures, bites, burns, ocular, stomatitis

Analgesic Agents

- Opioids
 - Butorphanol
 - Buprenorphine
 - Morphine
- NSAIDs
 - Meloxicam
 - Ketoprofen
- Local anesthetics
Opioid Analgesia in Reptiles

“Analgesic efficacy and respiratory effects of butorphanol and morphine in turtles”

- Butorphanol showed minimal analgesic efficacy in turtles, respiratory depression with high dose (28 mg/kg)
- Morphine (1.5 mg/kg) provided analgesia but also caused respiratory depression

Opioid Analgesia in Reptiles

- Butorphanol – high doses (20 mg/kg)
 - Analgesia in corn snakes at 8 hr
- Morphine – high doses (10 & 20 mg/kg)
 - Analgesia in bearded dragons at 8 hr

Opioid Analgesia in Reptiles

- Tramadol 10-25 mg/kg PO/SC
 - Red Eared Sliders
 - Less respiratory depression than morphine
 - Thermal nociception
 - PO 6-96 hr
 - SC 12-48 hr
NSAIDs

- Not controlled
- Injectable and oral
- Lack of pharmacologic data & efficacy studies
- Likely significant species variation
- Use in well hydrated patients without renal compromise

<table>
<thead>
<tr>
<th>NSAIDs</th>
<th>Meloxicam 0.1 – 0.2 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IM, IV, PO</td>
</tr>
<tr>
<td></td>
<td>q 24-48 hr</td>
</tr>
<tr>
<td></td>
<td>PK for oral and IV in green iguanas</td>
</tr>
<tr>
<td></td>
<td>Evidence of enterohepatic recycling</td>
</tr>
<tr>
<td>Ketoprofen 2 mg/kg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IM, SC</td>
</tr>
<tr>
<td></td>
<td>q 24-48 hr</td>
</tr>
</tbody>
</table>

Local Anesthesia

- Good adjunct for painful procedures
- Block nerve transmission peripherally
- Possible toxicity
Local Anesthesia

- Lidocaine (1%, dilute to 0.5%)
 - Rapid, short-acting
 - < 5 mg/kg
- Bupivacaine (0.25%, dilute to 0.125%)
 - Delayed, long-acting
 - < 2 mg/kg

Local Anesthesia

- Peripherally
- Intrathecally

Sterilization of hybrid Galapagos tortoises (Geochelone nigra) for island restoration. Part 2: phallectomy of males under intrathecal anaesthesia with lidocaine

Veterinary Record (2011) 168, 78

Eastern Box Turtle with aural abscess

- Morphine (1.5 mg/kg) 2 hr prior to procedure
- Include medetomidine 25-50 mcg/kg IM for relaxation if needed
- Local block with lidocaine
- Post-op meloxicam 0.2 mg/kg
EBD Shell Repair

- Consider minimally invasive techniques
- Stabilize patient
- Assess hydration, mentation, PCV
- Premed:
 - Morphine (1.5 mg/kg)
 - 2 hr before

EBD Shell Repair cont.

A. Med 25-50 mcg/kg + Ket 5 mg/kg
B. Or Propofol 3-6 mg/kg IV

- Intubate and ventilate
- Post op
 - Meloxicam 0.2 mg/kg
 - Or Ketoprofen 1-2 mg/kg
 - +/- Morphine

Green Iguana Gonadectomy

- Premed: Morphine 1 m/kg IM
- Induce: Propofol 7 mg/kg IV
- Post op: Meloxicam 0.2 mg/kg
- Local block: Bupivacaine
 - Cont. post-op analgesia
- SID/EOD Meloxicam 0.2 mg/kg IM
- +/- Morphine 1 mg/kg PRN
Conclusions

- Same principles of anesthesia & analgesia
- Assess risk, need & potential for pain
- Remember individual physiology and anatomy
- More research needed

Thank You