Anesthesia of the Acute Trauma Patient

Stuart Clark-Price, DVM, MS, DACVIM, DACVAA
University of Illinois
College of Veterinary Medicine

Trauma Patient
• Unique challenge to veterinary facility
 • Resource-intensive care
 • Multiple injuries to multiple body systems
 • Acute injuries overlaid and interact with a variety of chronic conditions
• Greater than 10% of caseload in small animal practice
 • Most are automobile related

Trauma Patient
• Types of injuries
 • Vehicle (and other blunt force trauma)
 • Most common
 • High energy impact results in blunt force trauma
 • Infection less likely if addressed quickly
 • Physical abuse
 • Varies in presentation
 • Blunt force, chemical, thermal, and explosive injuries
 • Animal attacks
 • Very problematic
 • Often also involves severe sepsis
 • Deep tissue injuries are often present but may not be initially visible
Outline

- Trauma Pathophysiology
- Shock
- Preoperative evaluation and management
- Fluid therapy
- Preoperative drug selection
- Induction agents
- Maintenance of anesthesia
- Intraoperative monitoring
- Potential intraoperative problems
- Postoperative analgesia

Trauma Pathophysiology

- Physical disruption from high energy impact
- Local biochemical response of injured tissues
- Systemic biochemical response of organ systems

Physical Tissue Disruption

- High Energy Impact
 - Follow a certain pattern of energy transfer
 - Results in a predictable set of tissue injuries
 - Four basic mechanisms of blunt trauma
 - Tension
 - Degloving injury
 - Shear force
 - Long bone fracture
 - Compression
 - Pulmonary and myocardial contusions, hepatic and splenic rupture
 - Overpressure
 - Bladder, intestinal, and body wall rupture
Physical Tissue Disruption

- Dogs versus Cats
 - Dog injuries tend to be from hind end forward
 - Turn away from oncoming vehicle
 - Pelvic and pelvic limb injuries
 - Intrathoracic injuries often secondary from transfer of force
 - Cat injuries tend to be front end/head trauma
 - Turn toward oncoming vehicle
 - Less likely to survive

Local Biochemical Response

- Three Phases
 - Nervous phase
 - Vasconstriction and vasodilation
 - Ischemia and reperfusion injury
 - Endothelial permeability and edema
 - Inflammatory phase
 - Migration of inflammatory cells and platelets
 - Release of pro-inflammatory cytokines
 - Enhanced susceptibility to SIRS and ARDS
 - Endocrine Phase
 - Tissue repair and remodeling
 - Post-traumatic inflammation
 - Angiogenesis and scar tissue formation

Systemic Biochemical Response

- Local reactions can also be applied systemically
 - Shock, redistribution of blood flow, ischemia, reperfusion
 - Massive liberation of inflammatory mediators
 - Catabolism followed by anabolic convalescence

- Extent of systemic reactions has greatest impact of suitability for general anesthesia
 - SIRS, MODS, ARDS
Shock

• A state of generalized inadequate tissue perfusion
 • Recovery is related to magnitude of oxygen debt

• Types of shock seen in trauma patients
 • Septic shock
 • Hemorrhagic shock
 • Spinal shock

Septic Shock

• Develops after a time lapse after injury
• Associated with SIRS
 • Global activation of the immune system with release of cytokines
 • Vascular permeability
 • Neutrophil infiltration
 • Capillary microemboli
 • Poorly regulated coagulation
 • Propagation of inflammatory response
• Chronic impairment of oxygen deliver to tissues leads to irreversible shock (MODS)

Septic Shock

• Clinical signs
 • Early (hyperdynamic phase)
 • Brick-red mucous membranes
 • Tachycardia
 • Normal or low blood pressure
 • Low vascular resistance
 • Late signs
 • Dogs
 • Tachycardia, hyper or hypotension, hyperglycemia
 • Shock Organs: GIT>liver>kidney>lungs
 • Cats
 • Bradycardia, hypotension, hypoglycemia
 • Shock organs: lungs (rapid fluid accumulation)
Hemorrhagic Shock

- Commonly encountered in acutely traumatized patient
- Clinical signs include:
 - Pallor and/or cyanosis
 - Disorientation
 - Tachycardia, dysrhythmias, and pump failure
 - Hypotension, progressive metabolic acidosis
 - Oliguria, DIC
- Compensatory mechanisms will maintain BP until ~40% of blood volume is lost
 - After 40% loss compensation fails and shock becomes irreversible

Spinal Shock

- Common sequela to spinal cord injury or blunt trauma
- Disruption of sympathetic outflow from thoracolumbar trunk
- Clinical signs
 - Warm extremities (peripheral vasodilation)
 - Bradycardia with hypotension
 - Responsive only to inotropic-pressor type drugs
 - Relative hypovolemia (increases vascular capacity)

Anesthetic Considerations

- Primary goal:
 - Optimize tissue perfusion and oxygen delivery to all vital organ systems
 - Induce unconsciousness
 - Provide analgesia and muscle relaxation
General Anesthesia for The Trauma Patient

- Preoperative evaluation and management
- Fluid therapy
- Preoperative drug selection
- Induction agents
- Maintenance of anesthesia
- Intraoperative monitoring
- Potential intraoperative problems
- Postoperative analgesia

Preoperative Evaluation and Management

- As a general rule, anesthesia should not be undertaken until a patient’s vital organ functions have been assessed and stabilized
- Immediate attention to “ABC”s
 - Deemed adequate before proceeding
 - Oxygen supplementation and ventilatory support
 - Poor ventilation or oxygenation
 - Chang in mental status
 - Signs of airway obstruction
- Assess adequacy of intravascular volume and cardiovascular function
 - Compensatory mechanisms can be confounding
 - Vasovagal reflex, increased heart rate, splenic contraction

Preoperative Evaluation and Management

- Base line values
 - TPR, MM and CRT
 - Temperature of extremities, mental status
- Minimum data base
 - PCV, TT, blood glucose, BUN
 - Urine specific gravity
- Thoracic radiographs
 - Pulmonary lesions
 - May not be radiographically apparent for 12 to 24 hours
 - Worsen for 24 to 35 hours
 - Resolve in 2 to 5 days
- ECG
 - Myocardial contusions and VPCs
 - Appear 24 to 72 hours after trauma
Fluid Therapy

- Most animals are hypovolemic
 - Pre-existing fluid deficits, ongoing loss, vasodilation (shock)
 - Anesthetic drugs aggravate hypotension and decrease sympathetic tone
- Crystalloids should be mainstay of therapy
 - Chosen based upon acid-base/electrolyte abnormalities
 - 3ml required to replace 1 ml of blood loss

Fluid Therapy

- Colloid solutions
 - Blood products and synthetic solutions
 - Used in addition to crystalloids
 - Albumin < 1.5 g/dL
 - TP < 3.5-4.0 g/dL
 - 1 ml required to replace 1 ml of blood
 - Hetastarch
 - 10 to 20 ml/kg/day
 - High doses can interfere with coagulation

Fluid Therapy

- Fresh frozen plasma
 - Not effective for volume replacement
 - Use for albumin, coagulation factors, and plasma proteins
 - 6-10 ml/kg
- Whole blood
 - Trauma patients have increased oxygen demand
 - Serial assessment of blood lactate levels
 - Should decrease with therapy
 - Persistent elevations above 8 mM/L despite therapy indicated poor prognosis (90% mortality rates)
 - PCV > 25% ensure adequate oxygen delivery to tissues
Fluid Therapy

- **Blood Administration**
 - "Rule of Thumb":
 - 2 ml/kg raises PCV 1% (whole blood)
 - 1 ml/kg raises PCV 1% (packed red cells)
 - Calculation:
 - Amount of Blood Needed = Desired PCV - Patient PCV
 - PCV of Donor Blood x Recipient Blood Volume
 - Recipient Blood Volume:
 - Dog = 50 ml/kg
 - Cat = 70 ml/kg
 - (8% of body weight in kg)
 - Rate of Administration: 0.1 ml/kg for first 30 minutes
 - Then 2 ml/kg/hr until desired PCV is achieved

Fluid Therapy

- **Electrolyte abnormalities**
 - Should be normalized before anesthesia
 - Hyperkalemia often seen in trauma patients
 - Renal compromise, urinary obstruction or rupture, massive tissue trauma, dehydration, acidosis
 - >6.0 mEq/L should not be anesthetized
 - >5.5 mEq/L, should not be anesthetized unless an emergency
 - Automaticity, conductivity, contractility, and excitability of the myocardium are depressed
 - ECG
 - Tall T waves, Prolonged PR interval, Wide QRS, Loss of P wave
 - Treatment
 - 0.9% sodium chloride
 - Glucose (insulin)
 - Sodium bicarbonate
 - Calcium

Preoperative Drug Selection

- Choice of agents chosen based on:
 - Current physical status, history
 - Reason for presentation, procedure
 - Special attention should be paid to cardiovascular and respiratory effect of agents
 - Preoperative sedation may be unnecessary is patient is compromised or depressed
 - Do not withhold analgesic medication
Opioids

- Have favorable cardiovascular profile
- Cardiovascular function is maintained
- Can act as a respiratory depressant
- Sedative in compromised patients
- Provide pre and post operative analgesia
- Have anesthetic sparing effects
- Choices:
 - Morphine – 0.5-1.0 mg/kg IV, IM
 - Hydromorphone – 0.1-0.2 mg/kg IV, IM
 - Methadone – 0.25-0.5 mg/kg IV, IM
 - Fentanyl – 5-20 µg/kg IV
 - Buprenorphine – 5-20 µg/kg IV, IM
 - Butorphanol – 0.2-0.4 mg/kg IV, IM

Benzodiazepines

- Mild tranquilizers and muscle relaxants
- Minimal cardiovascular or pulmonary depression
- Commonly given in combination with other drugs
 - Opioid
 - Ketamine
 - Diazepam (0.1-0.4 mg/kg, IV)
 - Propylene glycol base
 - Midazolam (0.1-0.4 mg/kg, IM, IV)

Agents to Avoid

- Ketamine
 - Stimulate endogenous release of catecholamines
 - Myocardial depressant
 - Arrhythmias, increased intracranial pressure
 - Use with caution
 - Reduce dosage
 - Low dose CR for pain management
- Ace promazine
 - Peripheral vasodilation
 - Prolonged bleeding, anemia
- Dexmedetomidine
 - Profound changes in cardiovascular function
Induction Agents

- As with premedications, selection should be based on condition of patient

Opioids

- Can be used as induction agents
- Left ventricular function, cardiac output, and systemic blood pressure are well maintained
- Usually used in combination with opioid
- Fentanyl 10-20 μg/kg IV
 - Administer midazolam (0.2 mg/kg) IV prior
 - Can cause profound bradycardia
 - ECG at induction
 - Anticholinergic responsive
 - May require mechanical ventilation

Propofol

- Also useful for rapid sequence inductions
- Similar side effects as thiopental
 - Peripheral vasodilation may be greater than barbiturates
 - Extrahepatic sites of clearance make it useful in patients with liver disease
- Fentanyl/Propofol inductions
 - Fentanyl 5-10 μg/kg IV
 - Propofol 0.5-2 mg/kg IV
- Lidocaine/Propofol inductions
 - Lidocaine 1-2 mg/kg IV
 - Propofol 1-4 mg/kg IV
- Midazolam/Propofol inductions
 - Midazolam 0.2-0.4 mg/kg IV
 - Propofol 1-4 mg/kg IV
Etomidate

- Ultrashort acting induction agent
- Useful in patients with cardiovascular instability
 - Minimal effects on heart rate, rhythm, cardiac output, and systemic blood pressure
 - Minimal respiratory depression
- Single bolus depresses adrenocortical activity for several hours
- Midazolam/Etomidate inductions
 - Midazolam 0.2-0.4 mg/kg IV
 - Etomidate 0.5-2 mg/kg IV to effect

Alfaxalone

- Steroid induction agent
- Cardiovascular stability
- Can cause respiratory depression similar to propofol
- Can be administered IM (cats) for sedation
- Not yet released in US

Maintenance of Anesthesia

- Inhalant Anesthetics
 - Duration of action is not dependent on metabolism
 - Anesthetic depth can be adjusted rapidly
 - Patients benefit from intubation, oxygen supplementation, and ventilatory support
 - Side effects
 - Dose dependent hypotension
 - Loss of cerebral and renal autoregulation
 - Hypothermia
Maintenance of Anesthesia

- Balanced anesthetic techniques
 - Inhalant/injectable combinations
 - Fentanyl CRI
 - High dose 0.3-0.7 µg/kg/min
 - Low dose 2-10 µg/kg/hr
 - Lidocaine
 - 1.2 mg/kg/hr
 - 50 µg/kg/min
 - Midazolam
 - 0.1 mg/kg/hr
 - 0.35 µg/kg/min
 - Ketamine
 - 0.5-1 mg/kg/hr
 - 10-50 µg/kg/hr

Local Anesthetics

- Can be used to target specific areas
- Reduce the need for systemic drugs
- Reduce the MAC of inhaled anesthetics

Local Anesthetic Techniques

- Topical anesthesia
- Infiltration anesthesia
 - Subcutaneous, intramuscular, subpleural, ring block
- Perineural anesthesia
 - Targeting specific nerves
- Spinal anesthesia
 - Epidural, subarachnoid
Local Anesthetics

Epidural Anesthesia

• Can be used for anesthesia of:
 • Pelvis, hind limb
 • Abdomen
 • Thoracic surgery
 • Thoracic limb

Intraoperative Monitoring

• Minimal monitoring should include ECG, indirect blood pressure and temperature

• Ideal monitoring for critical patients should include:
 • ECG
 • Direct blood pressure
 • Pulse oximeter
 • End-tidal gas measurements
 • Blood gas analysis
 • Additional monitoring
 • Urine output
 • Central venous pressure
Potential Intraoperative Problems

- Cardiac rhythm disturbances
 - Marked changes in HR may indicate other clinical problems
 - Tachycardia
 - Inadequate anesthesia, inadequate blood volume, poor tissue perfusion, hypercapnia, hypoxia
 - Prevents adequate ventricular filling, increased myocardial work and oxygen demand

Potential Intraoperative Problems

- Cardiac rhythm disturbances
 - Ventricular Premature Contractions (VPC’s)
 - Most common arrhythmia
 - Indicates area of myocardial irritation
 - pH < 7.20, hypothermia
 - When to treat:
 - Multiform morphology
 - Increasing frequency or runs
 - Therapeutics
 - Lidocaine (first drug of choice)
 - Dogs: 2 mg/kg IV bolus
 - Cats: 0.5 mg/kg IV bolus
 - Procainamide
 - 1-4 mg/kg IV
 - Esmolol
 - 0.2-0.5 mg/kg IV

Potential Intraoperative Problems

- Hypotension
 - Most commonly due to inadequate preoperative fluid replacement or failure to keep up with intraoperative losses
 - Low diastolic pressures (<40 mm Hg), positional changes in blood pressure, damping of BP during positive pressure ventilation indicate need for more volume
 - Myocardial depression and vasodilation may be due to anesthetic agents
 - Decrease inhalant (balanced techniques)
Potential Intraoperative Problems

- Pharmacologic support may be needed for hypotension
 - Dopamine
 - 2-10 μg/kg/min
 - Increased heart rate, contractility, and vascular tone
 - Ephedrine
 - 0.1-0.25 mg/kg
 - Increased heart rate, contractility, and vascular tone
 - Causes release of endogenous epinephrine
 - Calcium chloride
 - 0.1 mg/kg slowly over 5-15 minutes
 - Increases contractility, cardiac output, and vascular tone
 - Vasopressin
 - 0.05-0.1 units/kg
 - Increases vascular tone and decreases heart rate

Potential Intraoperative Problems

- Hypoventilation
 - Accurate assessment requires measurement of carbon dioxide
 - Arterial blood gas
 - End-tidal gas analysis
 - Generally runs 5-10 mm Hg lower than ABG
 - Significant respiratory acidosis and myocardial dysfunction can result
 - Causes:
 - Depressed respiratory center
 - Anesthetic drugs, increased ICP
 - Limited chest wall or diaphragm movement
 - Disrupted neuronal interface with respiratory muscles

Potential Intraoperative Problems

- Hypoventilation
 - Treatment
 - Address underlying cause
 - Positive-pressure ventilation
 - Ventilator settings
 - Tidal volume 10-15 ml/kg
 - Breaths/min 8-15
 - Caution in animals with pulmonary injury (contusions)
 - Excessive pressures can result in further barotrauma
 - Keep PIP < 12 cm H₂O
Potential Intraoperative Problems

- Hypoxemia
 - \(\text{PaO}_2 < 60 \text{ mm Hg} \) (\(\text{SPO}_2 < 90\% \)) oxygen delivery becomes severely compromised
 - Causes:
 - Hypoventilation
 - Rare in patients receiving supplemental oxygen
 - Diffusion impairment
 - Rare unless entire lung tissue is compromised or low inspired concentration of oxygen
 - Ventilation-perfusion mismatching
 - Most common cause in patients with pulmonary disease
 - Ventilation of under-perfused lung
 - Blood flow to under-ventilated lung
 - Treatment
 - Positive pressure ventilation
 - PEEP (5-10 cm H\(_2\)O)

Postoperative Care

- Supportive
 - Continued fluid therapy
 - Antibiotics as necessary
 - Continued monitoring of vital parameters
 - Analgesia ± sedation

Postoperative Analgesia

- Pain has negative effects
 - Delay recovery
 - Reduce eating and drinking
 - Decrease pulmonary function
 - Increase oxygen consumption
 - Delay tissue healing
 - Increase catecholamine release
 - Cause immobility and insomnia
Postoperative Analgesia

- **Opioids**
 - Mainstay of acute pain relief
 - Hydromorphone, morphine, methadone
 - Fentanyl CRI or Patch
- **Lidocaine**
 - Analgesic, antiarrhythmic, reduces reperfusion injury, free radical scavenger
- **Ketamine**
 - Strong analgesic for somatic pain
- **NSAIDs**
 - Controversial use in critical patients
 - Single post-operative dose in well hydrated patient?

Take Home Message

- Trauma patients present a unique challenge
- Internal injuries may not be readily apparent
 - Should be expected
 - Biochemical response may be delayed
 - Provide analgesia
 - Select drugs with favorable cardiovascular profile
 - Monitor

Questions?